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Abstract. We have calculated the one-loop supersymmetric corrections to the 2 → 2 parton scattering
subprocesses q̄q → q̄q, q̄q → gg, gq → gq and gg → gg, including form-factor corrections and box diagrams
with internal squarks and gluinos of arbitrary mass. In general, these exhibit cusps at the corresponding
direct-channel sparticle thresholds. We use these calculations to make numerical estimates of the possible
threshold effects at the Fermilab Tevatron collider and at the LHC, which depend on the rapidity range
selected, but can be as large as a few percent. These effects are diluted in the integrated large-ET cross
section, where they are negative.

1 Introduction

Large samples of inclusive hadronic jets are available now
from the Fermilab Tevatron collider, and will become
available from the LHC in the future. These offer the
prospects of precision tests of QCD, which is of interest
and importance in its own right. Moreover, as the dynam-
ics of QCD is better understood, it becomes a sharper tool
for probing possible physics beyond the Standard Model.
Complete calculations of jet physics to next-to-leading or-
der in perturbation theory exist in pure QCD [1,2]. How-
ever, this may not be sufficient for precision physics at an
exploratory machine that opens up a new energy range
where there may be thresholds for new physics. For in-
stance, the Fermilab Tevatron collider has already crossed
the threshold for t̄t production, and either it or the LHC
should cross the threshold for squark and gluino produc-
tion. In the neighbourhood of, and beyond, the thresh-
old for such new heavy strongly-interacting particles, their
virtual effects should be included in a complete treatment
of one-loop perturbative QCD effects.

Our attention was drawn to this problem by recent
measurements of large-ET jet cross sections at the Teva-
tron collider [3,4], some of which exhibited a prima facie
discrepancy with predictions based on the parton distribu-
tion functions available previously. Clearly there are un-
certainties in these distributions [5,6], which are not (yet)
calculable from first principles, and it has been argued in
particular [5] that reasonable uncertainties in the gluon
distribution could accommodate simultaneously both the
CDF [3] and D0 [4] jet measurements. However, it has also
been argued that strong-interaction threshold effects could
be significant [7,8], with emphasis placed on the possible
importance of the sparticle threshold [8]. One might con-

sider whether such a threshold effect could provide an al-
ternative signature for sparticles, if their decays differ from
those anticipated in conventional direct searches. Even if
one does not expect the sparticle threshold to be very im-
portant, it is clearly desirable to have an exact one-loop
treatment of it, just as one-loop sparticle corrections are
known and used in the analysis of precision electroweak
physics at and around the Z0 peak [9].

We have undertaken detailed calculations of such cor-
rections in the Minimal Supersymmetric extension of the
Standard Model (MSSM), and published first results [10].
We found that there could be threshold structures of the
order of a few % in the cross sections for individual parton-
parton scattering subprocesses when one-loop corrections
were included. However, these were of the wrong shape
and of insufficient magnitude to make a significant con-
tribution to the resolution of the CDF large-ET conun-
drum [3]. The purpose of this paper is to complete the
analysis of [10], presenting more details of the calculations,
presenting the one-loop corrections to all partonic subpro-
cesses, including box diagrams and the gg → gg subpro-
cess, which were not included in [10], and combining our
calculations in a complete one-loop numerical analysis1 of
jet cross sections at Fermilab and the LHC, including the
appropriate convolutions over all the contributing parton-
parton scattering subprocesses.

The layout of this paper is as follows. In Sect. 2 we
present details of our results [10] for the calculations of the
one-loop corrections to the partonic subprocesses arising
from the form-factor corrections to the triple-gluon ver-
tex and the quark-quark-gluon vertex, which include self-

1 Numerical results of such a study have also been published
in [11]
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energy corrections due to squarks2 and gluinos. We com-
ment on various consistency checks on our calculations,
demonstrating in particular cancellations between differ-
ent diagrams associated with Ward identities, and remain-
ing logarithmic singularities that reflect the expected run-
ning of the strong coupling αs above the supersymmetric
threshold. Section 3 contains a similar analysis of one-loop
box diagrams, including a number of further consistency
checks. Numerical results are presented in Sect. 4, includ-
ing the convolutions with parton distribution functions
which are appropriate for the analysis of jet cross sections
at the Fermilab Tevatron collider when ET ' m ≡ ms =
mg = 200 GeV (where ms,g denote the squark and gluino
masses), and at the LHC when ET ' m = 1 TeV. Section
5 summarizes our conclusions from our calculations. In the
appendix we list the Veltman-Passarino [12] functions, in
terms of which our results are displayed.

2 Form-factor corrections

In this section present the form-factor corrections for the
partonic subprocesses

q(p1) + q̄(p2) → q(p3) + q̄(p4) (2.1)

q(p1) + q̄(p2) → g(p3) + g(p4) (2.2)

g(p1) + g(p2) → g(p3) + g(p4). (2.3)

calculated using the MS prescription. The form factors
for all other partonic subprocesses can be obtained from
these by exploiting crossing symmetry.

The contribution to the amplitude for the subprocess
(2.1) from all diagrams except box graphs may be written
in the general form

4πiαs

s
v̄(p4)Fqqg(s)γµτau(p3) v̄(p2)

× F qqg(s)γµτau(p1), (2.4)

where τa is the generator of colour SU(3) in the defining
representation, and Fqqg(s) is a form factor for the quark-
quark-virtual-gluon vertex. The tree-level amplitude is ob-
tained by replacing this form factor by unity. The one-loop
corrections to this form factor from internal squarks and
gluinos come from the diagrams shown in Fig. 1a,b,g,h,
and give a contribution to Fqqg of the form

∆Fqqg =
αs

4π

{
4
(

CF − CA

2

)
C24({1})

+CA

[
− 1

2
+ 2C24({2}) − m2

gC0({2})

+s (C23({2}) + C12({2}))

2 We assume for simplicity that all the relevant left- and
right-handed squarks have equal masses. This means that our
results should not be assumed to apply to processes involving
both sbottom and stop squarks

.

.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 1. One-loop Feynman diagrams involving virtual sparti-
cles in the MSSM for a,b the virtual-gq̄q vertex, c,d the virtual-
ggg vertex, e,f the virtual-qq̄g vertex, g,h the gluon self energy,
and i the quark self energy. Here and in subsequent figures of
Feynman diagrams, the broken lines represent squarks and the
double solid lines represent gluinos

−1
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2m2

g

s
+ 1

)
(B0({1}) + 1) +

2
3s

A(mg) +
4
9

]

−1
3
TR

[(
1 − 4m2

s

s

)
(B0({2}) + 1)

+
4
s
A(ms) − 1

3

]}
, (2.5)

where the Veltman-Passarino (VP) functions [12] Ci, B0
are given in the appendix. They are calculated in n =
4−2ε dimensions, and the arguments {1}, {2} are defined
by

Ci({1}) = Ci(s, ms, mg, ms),
Ci({2}) = Ci(s, mg, ms, mg),
B0({1}) = B0(s, mg, mg),
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B0({2}) = B0(s, ms, ms), (2.6)

where ms and mg are the squark and gluino masses, re-
spectively. For the unsubtracted correction to the form
factor, we must add to (2.5) the pole term

−CF
αs

ε
, (2.7)

which arises from the wave-function renormalization of the
external quarks, and cancels the pole part of (2.5) propor-
tional to CF , as required by the abelian Ward identity.
Substituting the ultraviolet-divergent functions by their
pole parts, given in (A.13-A.15), we see that the poles
from the one-particle irreducible vertex corrections shown
in Figs. 1a,b) which are proportional to CA also cancel
between the two diagrams. The the remaining divergences
come from the functions B0, which contribute to the extra
renormalization of the strong coupling due to supersym-
metric particles, namely

− αs

12πε
(CA + TR) , (2.8)

and arise from the gluon self-energy contributions shown
in Figs. 1g,h).

Once this renormalization has been effected, the finite
form factor is given by (2.5), with the divergent functions
B0 and C24 understood to have been subtracted using the
MS prescription. The resulting contribution to the form
factor vanishes in the limit s → 0 when we set ms = mg =
m. In the limit s � m2 the form-factor correction is given
by the following simple expression:

lim
s�m2

∆Fqqg → αs

4π

{
CF

12
+

CA

60
− TR

30

}
s

m2 . (2.9)

which is O(0.1(s/m2))%. This and other form-factor cor-
rections are actually numerically considerably larger when
s ∼ m2 [10], as we shall see later.

The amplitude for the process (2.2), again omitting for
the moment box diagrams, may be written as

−i4παsε
ν
3ερ

4

{
1
t
v̄(p2)τa4τa3

×F ρ
gqq(p1 − p3)(p1/ − p3/ )F ν

gqq(p1 − p3)u(p1)

+
1
u

v̄(p2)τa3τa4

×F ν
gqq(p1 − p4)(p1/ − p4/ )F ρ

gqq(p1 − p4)u(p1)

−1
s
v̄(p2) [τa3 , τa4 ]

×Fqqg(s)γµV µνρ
3 (p3, p4)u(p1)

}
, (2.10)

where ε3, ε4 are the polarization vectors of the external
gluons with momenta p3, p4, whose colours are a3, a4, re-
spectively.

The quantity Fµ
gqq(q) is the form factor for the gluon-

quark-virtual-quark vertex, which at the tree level is sim-
ply γµ. The diagrams contributing to the corrections to

this form factor which involve internal squarks and gluinos
are shown in Fig. 1e,f,i, and give a contribution

∆Fµ
gqq(q) =

αs

4π

{
(4CF − 2CA) [C24({4})γµ + (C22({4})

−C23({4})q/qµ] + CA

[(
2C24({5}) − 1

2
− m2

gC0({5})

−q2(C22({5}) + C23({5}))
)
γµ + 2C23({5})q/qµ

]

−CF

2

[
(m2

g − m2
s + q2)

q2 B0(q2, ms, mg)

− 1
q2 (A(mg) − A(ms))

]
γµ

}
, (2.11)

where the arguments {4}, {5} are given by

Ci({4}) = Ci(q2, ms, ms, mg),

Ci({5}) = Ci(q2, mg, mg, ms). (2.12)

To obtain the unsubtracted form factor, we must add a
pole term

− αs

4πε

(
CF

2
+

CA

3
+

TR

3

)
, (2.13)

which arises from the wave-function renormalizations of
the external quark and gluon legs. Once this is included,
we notice that again the abelian pole term proportional to
CF cancels. The remaining pole term is given by (2.8), and
is absorbed by the renormalization of the strong coupling.
After this renormalization, and setting ms = mg = m, we
find that for q2 � m2

lim
q2�m2

∆Fµ
gqq(q) → αs

4π

{
CA

[
q2

4m2 γµ − 1
3m2 q/qµ

]

+
CF

6m2 q/qµ

}
(2.14)

which is O(1(q2/m2)%.
The three-gluon vertex function V µνρ

3 (p3, p4) may be
written as

V µνρ
3 (p3, p4) = −2gνρpµ

4F1(s) + 2gµρpν
4F2(s)

−2gµνpρ
3F2(s) + pν

4pρ
3p

µ
4F3(s), (2.15)

where s = 2p3·p4. At the tree level, the form factors F1, F2
take the value unity, whereas F3 is zero. The irreducible
one-loop contributions from squark and gluino loops to
these form factors are are shown in Fig. 1c,d, and are
given by

∆F1(s) =
αs

4π

{
CA

[
− 2

3
− m2

g (C0({6}) − C11({6})

+C12({6})) + s (C12({6}) + C22({6})
−C33({6}) + C34({6})) − 2C35({6})

+2C36({6}) + 2C24({6}) − 1
3

(
2m2

g

s
+ 1

)
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× (B0({1}) + 1) +
2
3s

A(mg) +
4
9

]

+TR

[
8C36({7}) − 8C35({7})

−1
3

(
1 − 4m2

s

s

)
(B0({2}) + 1)

− 4
3s

A(ms) +
1
9

]}
, (2.16)

∆F2(s) =
αs

4π

{
CA

[
− 2

3
− m2

g (C0({6}) − C12({6}))

−s (C22({6}) + C34({6}))
−2C36({6}) + 2C24({6})

−1
3

(
2m2

g

s
+ 1

)
(B0({1}) + 1) +

2
3s

A(mg) +
4
9

]

+TR

[
−8C36({7}) − 1

3

(
1 − 4m2

s

s

)

× (B0({2}) + 1) − 4
3s

A(ms) +
1
9

]}
, (2.17)

∆F3(s) =
2αs

π

{
CA [C22({6}) − C23({6}) − C33({6})

+C34({6})] + 2TR [C23({7}) − C22({7})

+C33({7}) − C34({7})]

}
, (2.18)

where the arguments {6}, {7} are given by

Ci({6}) = Ci(s, mg, mg, mg),
Ci({7}) = Ci(s, ms, ms, ms). (2.19)

To obtain the unsubtracted form factor, we must add a
pole term

− αs

4πε

(
2CA

3
+

2TR

3

)
, (2.20)

which arises from the wave-function renormalizations of
the external gluon legs as shown in Fig. 1g,h, leaving a
pole term equal to (2.8). After renormalization and setting
ms = mg = m, we find that for s � m2

lim
s�m2

∆F1(s) → αs

48π
CA

s

m2 (2.21)

lim
s�m2

∆F2(s) → αs

60π

(
CA +

TR

2

)
s

m2 (2.22)

lim
s�m2

∆F3(s) → αs

60π
(CA − 2TR)

1
m2 (2.23)

which are comparable in magnitude to the low-energy ex-
pansions of the previous form factors. Apart from some

minor differences, the low-energy expansions of our results
(2.9, 2.14, 2.21, 2.22, 2.23) confirm the general magnitudes
of the below-threshold corrections found in [8].

Finally, we can use V3 to write down the amplitude for
process (2.3) excluding the box diagrams which contribute
to the renormalization of the four-gluon coupling, which
we postpone until the next section:

i
4παs

s
εµ
1 εν

2ερ
3ε

σ
4fa1a2bfa3a4bV τµν

3 (p1, p2)V
τρσ
3 (p3, p4)

+ permutations {2, 3, 4}, (2.24)

where ε1, ε2 are the polarization vectors of the incoming
gluons with momenta p1, p2, whose colours are a1, a2, re-
spectively, and ε3, ε4 are the polarization vectors of the
outgoing gluons with momenta p3, p4, whose colours are
a3, a4, respectively. The notation “permutations {2, 3, 4}”
means permutations over the momenta, polarization vec-
tors and colours of gluons 2,3,4.

3 Box diagrams

For the box diagrams we need the four-point VP functions
Di [12] listed in the appendix in (A.8) to (A.12).

The box diagrams for the process (2.1), shown in
Fig. 2, give the following contribution to the amplitude:

2iCAα2
s {D2(t, u, ms, mg, ms, mg, µ, ν) [Aµν

V V + Aµν
AA]

+m2
gD0(t, u, ms, mg, ms, mg) [ASS + APP ]

}
+ (t ↔ u) (3.1)

where

Aµν
V V = v̄(p4)γµτav(p2) ū(p3)γντau(p1)

Aµν
AA = v̄(p4)γµγ5τav(p2) ū(p3)γνγ5τau(p1)

ASS = v̄(p4)τav(p2) ū(p3)τau(p1)
APP = v̄(p4)γ5τav(p2) ū(p3)γ5τau(p1)

The second graph in Fig. 2 arises from the Majorana na-
ture of the internal gluino lines, which permits them to
propagate both along and against the flow of the quark
fermion number.

The box diagrams for the process (2.2) are shown in
Fig. 3. Figure 3a gives a contribution

−2iα2
sε

ν
3εσ

4 { [D3(t, u, ms, mg, mg, mg, µ, ρ, τ)
+ (p1 − p3)ρD2(t, u, ms, mg, mg, mg, µ, τ)] Bµνρστ

ab

+m2
g [D1(t, u, ms, mg, mg, mg, µ) (Bνµσ

ab + Bµνσ
ab + Bνσµ

ab )

+ (p1 − p3)µD0(t, u, ms, mg, mg, mg)B
νµσ
ab ] }

+(3 ↔ 4), (3.2)

where the tensors B are defined as

Bµ1···µn

ab = v̄(p2)
(
γµ1 · · · γµn

[
τ b, τ c

] [
τa, τ c

])
×u(p1). (3.3)
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Fig. 2. Box diagrams for the process q q̄ → q q̄
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Fig. 3. Box diagrams for the process q q̄ → g g
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Fig. 4. Gluino box diagram for the process g g → g g

Figure 3b gives a contribution

−8iα2
sε

ν
3εσ

4 { D3(t, u, mg, ms, ms, ms, µ, ν, σ)
+pν

1D2(t, u, mg, ms, ms, ms, µ, σ)
+ (p1 − p3)σ [D2(t, u, mg, ms, ms, ms, µ, ν)
+pν

1D1(t, u, mg, ms, ms, ms, µ)]}
×v̄(p2)

(
γµτ cτ bτaτ c

)
u(p1) + (3 ↔ 4) (3.4)

Figure 3c gives a contribution

−4iα2
sε

ν
3εσ

4 { [D3(t, s, ms, mg, mg, ms, µ, ρ, σ)

+ (p1 − p3)µD2(t, s, ms, mg, mg, ms, ρ, σ)] B′µνρ
ab

+m2
g D1(t, s, ms, mg, mg, ms, σ)B′ν

ab }
+(3 ↔ 4), (3.5)

where the tensors B′ are defined by

B′µ1···µn

ab = ifdac v̄(p2)
(
γµ1 · · · γµnτ cτ bτd

)
u(p1). (3.6)

and the notation (3 ↔ 4) means (ε3 ↔ ε4, p3 ↔ p4, t ↔
u, a ↔ b).

The contributions to the process (2.3) from box dia-
grams are shown in Fig. 4 (for an internal gluino loop)
and Fig. 5 (for an internal squark loop). Also included in
Fig. 5 are diagrams that involve the four-point coupling
between gluons and squarks. Although these are not box
diagrams, we include them here, because they do not con-
tribute to the form factor for the triple-gluon vertex. The
contribution to the amplitude from Fig. 4 is

i
α2

s

2
G1 { D4(s, t, mg, mg, mg, mg, µ, ν, ρ, σ)

×tr (ε1/ γµε4/ γνε3/ γρε2/ γσ)
+D3(s, t, mg, mg, mg, mg, µ, ν, ρ)
× [tr (ε1/ γµε4/ p4/ ε3/ γνε2/ γρ) + tr (ε1/ γµε4/ γνε3/ γρε2/ p1/ )
+tr (ε1/ γµε4/ γνε3/ (p1/ + p2/ )ε2/ γρ) ]
+D2(s, t, mg, mg, mg, mg, µ, ν)
× [tr (ε1/ γµε4/ p4/ ε3/ γνε2/ p1/ ) + tr (ε1/ γµε4/ p4/ ε3/ (p1/ + p2/ )ε2/ γν)
+tr (ε1/ γµε4/ γνε3/ (p1/ + p2/ )ε2/ p1/ )]
+D1(s, t, mg, mg, mg, mg, µ)
×tr (ε1/ γµε4/ p4/ ε3/ (p1/ + p2/ ) ε2/ p1/ )
+m2

gD2(s, t, mg, mg, mg, mg, µ, ν)

× [16εµ
1 εν

3ε2 · ε4 + 16εµ
4 εν

2ε1 · ε3]

+m2
gD1(s, t, mg, mg, mg, mg, µ)

× [2εµ
4 tr (ε1/ ε3/ (p1/ + p2/ ) ε2/ )

+2εµ
2 tr (ε1/ ε4/ p4/ ε3/ ) + 2εµ

3 tr (ε1/ ε4/ ε2/ p1/ )
+tr (ε1/ γµε4/ p4/ ε3/ ε2/ )
+tr (ε1/ γµε4/ ε3/ ε2/ p1/ ) + tr (γµε1/ ε4/ ε3/ (p1/ + p2/ ) ε2/ ) ]
+m2

gD0(s, t, mg, mg, mg, mg) [tr (ε1/ ε4/ p4/ ε3/ (p1/ + p2/ ) ε2/ )

+tr (ε1/ ε4/ ε3/ (p1/ + p2/ ) ε2/ p1/ ) + tr (ε1/ ε4/ p4// ε3/ ε2/ p1/ ) ]
+m4

gD0(s, t, mg, mg, mg, mg)tr (ε1/ ε4/ ε3/ ε2/ ) }
(+ permutations {2, 3, 4}), (3.7)

where the colour factor G1 is given by

G1 = fa1abfa2bcfa3cdfa4da. (3.8)

In the interests of compactness, we have left this expres-
sion in terms of traces over γ matrices. The contribution
from Fig. 5a is

−32iα2
sG2 εµ

1 εν
2ερ

3ε
σ
4 { D4(s, t, ms, ms, ms, ms, µ, ν, ρ, σ)

+pν
1D3(s, t, ms, ms, ms, ms, µ, ρ, σ)

+ (p1 + p2)
ρ
D3(s, t, ms, ms, ms, ms, µ, ν, σ)

pν
1(p1 + p2)ρD2(s, t, ms, ms, ms, ms, µ, σ) }
+ permutations {2, 3, 4}), (3.9)
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Fig. 5. a Squark box diagram and b,c,d diagrams involving quartic couplings that contribute to the process g g → g g

where the colour factor G2 is given by

G2 = tr (τa1τa2τa3τa4) (3.10)

The contribution from Fig. 5b is

4iα2
sG3 ε1 · ε4 ε2 · ε3 B0(u, ms, ms) (3.11)
(+ permutations {2, 3, 4}), (3.12)

where the colour factor G3 is given by

G3 = tr
(
τa1τa2τ{a3τa4}

)
(3.13)

The contribution from Fig, 5c is

−16iα2
sG3 ε2 · ε3 [C24(u, ms, ms, ms) ε1 · ε4

−C23(u, ms, ms, ms) p4 · ε1 p1 · ε4]
(+ permutations {2, 3, 4}), (3.14)

Finally, from Fig. 5d we get

−16iα2
sG3 ε1 · ε4 [C24(u, ms, ms, ms) ε2 · ε3

−C23(u, ms, ms, ms) p3 · ε2 p2 · ε3]
(+ permutations {2, 3, 4}), (3.15)

These contributions contain ultraviolet divergences, which
are associated with the renormalization Z4 of the four-
point gluon vertex. Application of Ward identities tells us
that the coefficient of the pole parts of the integrals should
be given by the contribution ∆β0 to the β function, multi-
plied by the tree-level amplitude Γ4 for the four-gluon cou-
pling. In the above expressions, poles arise in the unsub-
tracted forms of the functions B0, C24 D4. Exploiting the
pole parts displayed in the appendix in (A.14,A.15,A.18),
and permuting the gluons 2,3,4, we arrive at a pole term

− αs

4πε

2
3

(CA + TR)Γ4 =
1
ε
∆β0Γ4, (3.16)

as required.
In order to obtain the relevant contributions to the

partonic cross sections, these contributions to amplitudes

must be multiplied by the Hermitian conjugates of the
corresponding tree-level amplitudes and summed (aver-
aged) over final (initial) quark or gluon polarizations and
colours. These tedious but straightforward manipulations
are most conveniently performed using a fast algebraic
manipulation package: we have used FORM.

Finally, we note that the box-diagram contributions
for all other partonic subprocesses can be obtained from
the above expressions by crossing symmetry.

4 Numerical results

We first present the results for the one-loop corrections
to all the different parton-parton scattering cross sections
shown in Fig. 6. These are for the simplified case ms =
mg = m, although our analytical results apply for arbi-
trary ratios ms/mg. These extend and complete the anal-
ogous plots shown in [10], which did not include box dia-
grams, nor results for the subprocess gg → gg. We already
commented in [10] that we did not expect the box-diagram
contributions to be numerically large, and this has been
confirmed by our complete calculation.

We first note that, because these corrections to the
cross sections are due to interferences between tree-level
and one-loop amplitudes, they are not necessarily posi-
tive. In particular, processes which are dominated by the
exchange of a parton in the t channel give a negative cor-
rection, and we see that the corrections in Fig. 6c,d,e are
negative for s ∼ 4m2. We also note that each of the cor-
rections exhibits a cusp at

√
s = 2m, creating a local max-

imum in the magnitude of the one-loop correction. This
is largest for the subprocesses qj q̄j → qk q̄k and qq̄ → gg
shown in Figs. 6a,b, which are unfortunately not domi-
nant at the Fermilab Tevatron collider and the LHC. Next
in magnitude is the qjg → qjg shown in Fig. 6, which is
of greater experimental significance. The newly-calculated
one-loop correction to the subprocess gg → gg shown in
Fig. 6e is the smallest numerically.

We also note that each of the one-loop corrections
grows logarithmically at large s � m2. As was mentioned
previously, some of this logarithmic behaviour is due to
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Fig. 6. One-loop virtual-sparticle corrections in the threshold
region of the subprocess centre-of-mass energy squared s to
the processes a qj q̄j → qk q̄k, b q q̄ → g g, c qj qk → qj qk,
d qj g → qj g, and e g g → g g. In each case we have plotted
the ratio of the one-loop cross section to the tree-level value,
and in b,c,d,e we have plotted this ratio for three different
choices of t/s, equivalent to different parton-parton centre-of-
mass scattering angles. All corrections are evaluated using αs =
0.11, and ms = mg = m

ultraviolet divergences associated with the different run-
ning of αs above the sparticle threshold. However, this is
not the only source of logarithmic behaviour. Since the
two-jet cross section does not include final states contain-
ing sparticles, there are also infrared divergences when
m2 � s. Moreover, numerical studies show that the loga-
rithmic asymptotic behaviour does not set in until suben-
ergies beyond the reach of the Fermilab Tevatron collider
- for m = 200 GeV - or the LHC - for m = 1 TeV. For
these two reasons, it is not adequate to model the sparti-
cle threshold simply by switching to the above-threshold
form of αs for s > 4m2.

We now use the above results to calculate one-loop
corrections to jet cross sections at large ET and two-jet
invariant mass M , by convoluting the above subprocess
results with parton distributions. Since the higher-order
sparticle corrections are only significant over a small range
of parton subenergy in the threshold region, it is conve-
nient to start with the triply-differential cross section as
a function of M and the rapidities y1, y2 of the final-state
jet pair. In terms of the partonic squared matrix elements,

this is given by

d3σ

dM2dy1dy2
=

1
8πM4

∑
ijkl

fi(x1)fj(x2)
(∣∣Mkl

ij (M
2, t̂)|2

+|Mkl
ij (M

2, û)|2) (4.1)

where fi(x) is the parton distribution function for parton
i, Mkl

ij is the matrix element for the scattering of parton
i and parton j to partons k, l, and the jet rapidities y1,2
are given by

x1(2) =
M√

s
e±(y1+y2), (4.2)

and

t̂ = −M2 − û = − M2

1 + exp(y1 − y2)
. (4.3)

To exemplify the results obtained with (4.1), we consider a
number of discrete choices of the jet rapidities y1,2, shown
in Fig. 7 for the Fermilab Tevatron, and in Fig. 8 for
the LHC. We have used the parton-distribution functions
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Fig. 7. Triple-differential cross section for p p̄ scattering at√
s = 1.8 TeV, as a function of the two-jet invariant mass

M , for various choices of jet rapidities, calculated assuming
ms = mg = 200 GeV. Here and in subsequent plots, R denotes
the ratio of the one-sparticle-loop-corrected cross section to the
tree-level cross section

from [13], and do not expect that using other parametriza-
tions would significantly affect our results.

The first striking feature is that the corrections are
negative. This is because, over most of the ranges of par-
ton momentum fractions x1, x2 studied, the subprocesses
involving t-channel exchange dominate over the annihila-
tion processes. Indeed, recalling that we must symmetrize
over the partons in the final-state jets, we see from the
tree-level cross-sections given in [1] that the subprocess
cross section for the scattering of two quarks with dif-
ferent flavours at any value of s is always an order of
magnitude larger than the corresponding cross section for
quark-antiquark annihilation, quite apart from the fact
that the parton distribution functions provide more flux
for this process. The second important feature of the plots
shown in Figs. 7,8 is that, although characteristic cusps al-
ways appear at threshold, the reduction of the differential
cross-section due to the sparticle-loop corrections is sig-
nificant only for narrow ranges of rapidity pairs, {y1, y2}.
For this reason, these corrections are substantially washed
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Fig. 8. Triple-differential cross section for p p scattering at√
s = 14 TeV, as a function of the two-jet invariant mass M ,

for various choices of jet rapidities, calculated assuming ms =
mg = 1 TeV. Again, R denotes the ratio of the one-sparticle-
loop-corrected cross section to the tree-level cross section

out if one integrates over one of the rapidities, in order to
obtain the double-differential cross-section, in which the
rapidity of only one of the final-state jets is measured. Nev-
ertheless, for sufficiently small values of jet rapidity, there
still appears a cusp at threshold, as shown in Fig. 9 for
the case of the Fermilab Tevatron collider. However, these
cusps are always somewhat diminished and broader than
the previous cusps for the triple-differential cross sections.
This “washing out” effect is greater for the LHC shown
in Fig. 10, where the dip in the threshold region is quite
possibly too small to be observed.

This dilution is even more evident in the case of the
single-differential cross section as a function of the trans-
verse energy ET , as shown in Fig. 11 for the case of the
Tevatron. There is a broad dip in the cross section for
ET ' m, but this is probably also too shallow to be ob-
servable. This dip is again shallower for the LHC large-ET

cross section, shown in Fig. 12.
In general, the sparticle-loop signal is clearer for spar-

ticles of mass ' 200 GeV at the Tevatron than for spar-
ticles of mass ' 1 TeV at the LHC. The reason for this
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Fig. 9. Double-differential cross-section for p p̄ scattering at√
s = 1.8 TeV, as a function of the two-jet invariant mass M ,

for various different jet rapidities, calculated assuming ms =
mg = 200 GeV
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Fig. 10. Double-differential cross-section for p p scattering at√
s = 14 TeV, as a function of the two-jet invariant mass M ,

for various different jet rapidities, calculated assuming ms =
mg = 1 TeV

is that smaller values of m2/s are sensitive, on the aver-
age, to smaller values of x, thereby sampling more of the
gluon content of the incident hadrons. As we saw earlier,
the sparticle-loop effects are smallest for purely gluonic
scattering. It is, however, noteworthy that the net effect
of virtual-sparticle loops is to decrease the predicted cross
section, and can therefore not be used even as a partial
explanation of any unexpected rise in the large-ET differ-
ential cross section [3].

5 Conclusions

We have presented in this paper complete one-sparticle-
loop corrections to the large-ET and large-M cross sec-
tions at high-energy hadron-hadron colliders, and used
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Fig. 11. Single-differential cross section for p p̄ scattering at√
s = 1.8 TeV, as a function of transverse energy ET , calcu-

lated assuming ms = mg = 200 GeV
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Fig. 12. Single-differential cross section for pp scattering at√
s = 14 TeV, as a function of transverse energy ET , calculated

assuming ms = mg = 1 TeV

them to present some numerical results for the Fermilab
Tevatron collider and the LHC. We find that the sparticle-
loop effects are too small, and of the wrong sign, to make
any contribution to explaining the possible large-ET cross-
section discrepancy reported recently [3]. However, the
fact that our calculated corrections exhibit cusps at the
sparticle threshold may encourage the hope that these
effects could be visible in the large-statistics data to be
obtained in the future at the Tevatron collider and the
LHC.

As we have shown, these cusps are most noticeable in
the triple-differential jet cross section d3σ/dMdy1dy2, and
get progressively more washed out as one integrates over
one or both jet rapidities, or if one plots the integrated
large-ET cross section. It is for the experimental collabo-
rations to judge whether they will be able to obtain the
necessary statistics, and whether the systematic errors can
be controlled to the desired low level. In this paper we have
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not included any allowance for experimental effects such
as the initial transverse momenta of the colliding partons,
extra gluon radiation, or the experimental resolution in
the large-ET jet energies.

Evidently, we do not know where the squark and gluino
thresholds may be, nor whether they are coincident. The
numerical results presented in this paper have been for the
optimistic case ms = mg, and our threshold effects will be
surely be spread out and further diluted to some extent if
ms and mg are substantially different. However, we would
like to point out that looking for such a cusps in differ-
ential cross sections is in principle a model-independent,
though indirect, way of looking for strongly-interacting
sparticles. The only vertices that enter our calculations
are those proportional to αs, and the squark and gluino
decay vertices do not enter. Thus, looking for the subtle
effects we have presented here is a strategy complementary
to the direct searches for sparticles decaying according to
some particular model scenario, which depends whether
R parity conserved or not, and on the spectrum of lighter
sparticles. Also, the large cross section for large-ET jets
provides a window on large-mass physics that may reach
out to larger sparticle masses than direct searches in spe-
cific decay modes with uncertain branching ratios.

Anybody interested in obtaining the code used to derive these
results should contact D.A.R., who will make it freely available.
J.E. thanks the University of Melbourne School of Physics,
and D.A.R. thanks the CERN Theory Division, for hospitality
during the completion of this work.

Appendix

In this appendix we list the VP [12] functions used in the
text.

Tadpole function

∫
dnk

(2π)n

1
(k2 − m2)

=
i

16π2 A(m) (A.1)

Two-point Functions:

∫
dnk

(2π)n

1
(k2 − m2

1)((k + p)2 − m2)2

=
i

16π2 B0(p2, m2
1, m

2
2). (A.2)

∫
dnk

(2π)n

kµ

(k2 − m2
1)((k + p)2 − m2)2

=
i

16π2 B1(p2, m2
1, m

2
2) pµ. (A.3)

Vertex functions:

∫
d4k

(2π)4
1

(k2 − m2
1)((k + p1)2 − m2)2((k + p1 + p2)2 − m2

3)

=
i

16π2 C0 (A.4)

∫
d4k

(2π)4
kµ

(k2 − m2
1)((k + p1)2 − m2)2((k + p1 + p2)2 − m2

3)

=
i

16π2 (C11 pµ
1 + C12 pµ

2 ) , (A.5)

∫
dnk

(2π)n

kµkν

(k2 − m2
1)((k + p1)2 − m2)2((k + p1 + p2)2 − m2

3)

=
i

16π2 (C21 pµ
1pν

1 + C22 pµ
2pν

2 + C23(p
µ
1pν

2 + pµ
2pν

1)

+C24g
µν) , (A.6)

∫
dnk

(2π)n

kµkνkρ

(k2 − m2
1)((k + p1)2 − m2)2((k + p1 + p2)2 − m2

3)

=
i

16π2 (C31 pµ
1pν

1pρ
1 + C32 pµ

2pν
2pρ

2

+C33(p
µ
1pν

1pρ
2 + pµ

1pν
2pρ

1 + pµ
2pν

1pρ
1)

+C34(p
µ
1pν

2pρ
2 + pµ

2pν
1pρ

2 + pµ
2pν

2pρ
1)

+C35(gµνpρ
1 + gµρp

ν
1 + gνρp

µ
1 )

+C36(gµνpρ
2 + gµρp

ν
2 + gνρp

µ
2 )) , (A.7)

where the functions C0, Cij have in general the arguments
(p2

1, p
2
2, (p1 + p2)2, m2

1, m
2
2, m

2
3). However, in our case we

always have p2
1 = p2

2 = 0, so we suppress the first two
arguments.

Box functions:

∫
d4k

(2π)4

× 1

(k2−m2
1)((k+p1)2−m2

2)((k+p1+p2)2−m2
3)((k−p4)2−m2

4)

= i
16π2 D0(2p1 · p2, 2p2 · p4, m1, m2, m3, m4), (A.8)

∫
d4k

(2π)4

× kµ

(k2−m2
1)((k+p1)2−m2

2)((k+p1+p2)2−m2
3)((k−p4)2−m2

4)

= i
16π2 D1(2p1 · p2, 2p2 · p4, m1, m2, m3, m4, µ),(A.9)

∫
d4k

(2π)4
kµkν

(k2−m2
1)((k+p1)2−m2

2)((k+p1+p2)2−m2
3)((k−p4)2−m2

4)

= i
16π2 D2(2p1 · p2, 2p2 · p4, m1, m2, m3, m4, µ, ν),

(A.10)
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∫
d4k

(2π)4

× kµkνkρ

(k2−m2
1)((k+p1)2−m2

2)((k+p1+p2)2−m2
3)((k−p4)2−m2

4)

= i
16π2 D3(2p1 · p2, 2p2 · p4, m1, m2, m3, m4, µ, ν, ρ),

(A.11)

∫
dnk

(2π)n

× kµkνkρkσ

(k2−m2
1)((k+p1)2−m2

2)((k+p1+p2)2−m2
3)((k−p4)2−m2

4)

= i
16π2 D4(2p1 · p2, 2p2 · p4, m1, m2, m3, m4, µ, ν, ρ, σ).

(A.12)

For the sake of compactness, we do not write these tensor
expressions out in terms of the vectors p1 · · · p4, but refer
the reader to [12] for details.

The exact forms of the functions Bi, Ci, Cij , Di are
given in [12]. The functions A, B0, B1, C24, C35, C36, D4
are ultraviolet divergent, and therefore should be calcu-
lated in n = 4 − 2ε dimensions. The pole parts of these
functions are given by the following expressions:

P.P {A(m)} =
m2

ε
(A.13)

P.P {B0(x, m1, m2)} =
1
ε

(A.14)

P.P {C24(x, m1, m2, m3)} =
1
4ε

(A.15)

P.P {C35(x, m1, m2, m3)} = − 1
6ε

(A.16)

P.P {C36(x, m1, m2, m3)} = − 1
12ε

(A.17)

P.P {D4(x, y, m1, m2, m3, m4, µ, ν, ρ, σ)}
=

1
24ε

(gµνgρσ + gµρgνσ + gµσgνρ) (A.18)
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